Total	No.	of Questions - 24	
Total	No.	of Printed Pages - 3	

Regd.					
No.					

Part - III

MATHEMATICS, Paper - I (B).

(Co-ordinate Geometry and Calculus)

(English Version)

Time: 3 hours Max. Marks: 75

Note: This question paper consists of **three** sections *A*, *B* and *C*.

SECTION A

I. Very short answer type questions.

 $10 \times 2 = 20$

- i) Attempt all questions.
- ii) Each question carries two marks.
- 1. Slope of the line passing through the points (2, 5) and (x, 3) is 2. Find the value of x.
- 2. Find the distance between the parallel lines 5x 3y 4 = 0 and 10x 6y 9 = 0.
- 3. Find the midpoint of the line joining the points (1, 2, 3) and (-2, 4, 2).
- 4. Find the direction of the cosines of the normal to the plane x + 2y + 2z 4 = 0.
- 5. Is 'f' defined by $f(x) = \begin{cases} \frac{Sin \ 2x}{x} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases}$ is continuous at x = 0?
- **6.** If $y = \frac{ax+b}{cx+d}$, find $\frac{dy}{dx}$.
- 7. If $x = a \cos^3 t$, $y = a \sin^3 t$, find $\frac{dy}{dx}$

G-58 (DAY-7)

1

(P.T.O.)

- 8. Find the derivative of $Tan^{-1}\left(\frac{1+x}{1-x}\right)$.
- 9. If $y = x^2 + x$, x = 10, $\Delta x = 0.1$, then find Δy and dy.
- 10. Show that at any point (x, y) on the curve $y = b \cdot e^{\frac{x}{a}}$, the length of the subtangent is constant.

SECTION B

II. Short answer type questions.

 $5 \times 4 = 20$

- i) Attempt any five questions.
- ii) Each question carries four marks.
- 11. Find the equation of the locus 'P' if the line segment joining (2, 3) and (-1, 5) subtends a right angle at 'P'.
- 12. Find the transformed equation of $17x^2 16xy + 17y^2 = 225$ when the axes are rotated through an angle of 45^0 .
- 13. Find the equation of the straight line passing through A (-1, 3) and (i) parallel to and (ii) perpendicular to the straight line passing through B(2, -5) and C(4, 6).
- 14. Find the derivative of $\sqrt{x+1}$ by the first principle.
- 15. Evaluate $\lim_{x \to 2} \frac{2x^2 7x 4}{(2x 1)(\sqrt{x} 2)}$
- 16. A particle moving along a straight line has the relation $s = t^2 + 2t + 3$ connecting the distance 's' described by the particle in time t. Find the velocity and acceleration of the particle at time t = 3seconds.
- 17. Using Euler's theorem, show that $x \cdot \frac{\partial u}{\partial x} + y \cdot \frac{\partial u}{\partial y} = \frac{1}{2} Tan u$ for the

function
$$u = Sin^{-1} \left(\frac{x+y}{\sqrt{x} + \sqrt{y}} \right)$$

SECTION C

III. Long answer type questions.

 $5 \times 7 = 35$

- i) Attempt any five questions.
- ii) Each question carries seven marks.
- 18. Find the orthocenter of the triangle formed by vertices (-2, -1) (6, -1) and (2, 5).
- 19. Show that the equation $2x^2 13xy 7y^2 + x + 23y 6 = 0$ represents a pair of straight lines. Also find the angle between them and the co-ordinates of point of intersection of the lines.
- **20.** Show that the lines joining the origin to the points of intersection of the curve $x^2 xy + y^2 + 3x + 3y 2 = 0$ and the straight line $x y \sqrt{2} = 0$ are mutually perpendicular.
- 21. Find the angle between the lines whose direction cosines are given by the equation 3l + m + 5n = 0 and 6mn 2nl + 5lm = 0.

22. If
$$y = Tan^{-1} \left[\frac{\sqrt{1+x^2} + \sqrt{1-x^2}}{\sqrt{1+x^2} - \sqrt{1-x^2}} \right]$$
 for $0 < |x| < 1$, find $\frac{dy}{dx}$.

- 23. Find the angle between the curves $y^2 = 8x$, $4x^2 + y^2 = 32$.
- 24. A window is in the shape of a rectangle surmounted by a semicircle. If the perimeter of the window be 20ft, find the maximum area.